Cargando…
Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables the quantification of contrast leakage from the vascular tissue by using pharmacokinetic (PK) models. Such quantitative analysis of DCE-MRI data provides physiological parameters that are able to provide information of tumor path...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536783/ https://www.ncbi.nlm.nih.gov/pubmed/26327778 http://dx.doi.org/10.4137/CIN.S19342 |
_version_ | 1782385798301089792 |
---|---|
author | Kontopodis, Eleftherios Kanli, Georgia Manikis, Georgios C Van Cauter, Sofie Marias, Kostas |
author_facet | Kontopodis, Eleftherios Kanli, Georgia Manikis, Georgios C Van Cauter, Sofie Marias, Kostas |
author_sort | Kontopodis, Eleftherios |
collection | PubMed |
description | Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables the quantification of contrast leakage from the vascular tissue by using pharmacokinetic (PK) models. Such quantitative analysis of DCE-MRI data provides physiological parameters that are able to provide information of tumor pathophysiology and therapeutic outcome. Several assumptive PK models have been proposed to characterize microcirculation in the tumoral tissue. In this paper, we present a comparative study between the well-known extended Tofts model (ETM) and the more recent gamma capillary transit time (GCTT) model, with the latter showing initial promising results in the literature. To enhance the GCTT imaging biomarkers, we introduce a novel method for segmenting the tumor area into subregions according to their vascular heterogeneity characteristics. A cohort of 11 patients diagnosed with glioblastoma multiforme with known therapeutic outcome was used to assess the predictive value of both models in terms of correctly classifying responders and nonresponders based on only one DCE-MRI examination. The results indicate that GCTT model’s PK parameters perform better than those of ETM, while the segmentation of the tumor regions of interest based on vascular heterogeneity further enhances the discriminatory power of the GCTT model. |
format | Online Article Text |
id | pubmed-4536783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Libertas Academica |
record_format | MEDLINE/PubMed |
spelling | pubmed-45367832015-08-31 Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data Kontopodis, Eleftherios Kanli, Georgia Manikis, Georgios C Van Cauter, Sofie Marias, Kostas Cancer Inform Original Research Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables the quantification of contrast leakage from the vascular tissue by using pharmacokinetic (PK) models. Such quantitative analysis of DCE-MRI data provides physiological parameters that are able to provide information of tumor pathophysiology and therapeutic outcome. Several assumptive PK models have been proposed to characterize microcirculation in the tumoral tissue. In this paper, we present a comparative study between the well-known extended Tofts model (ETM) and the more recent gamma capillary transit time (GCTT) model, with the latter showing initial promising results in the literature. To enhance the GCTT imaging biomarkers, we introduce a novel method for segmenting the tumor area into subregions according to their vascular heterogeneity characteristics. A cohort of 11 patients diagnosed with glioblastoma multiforme with known therapeutic outcome was used to assess the predictive value of both models in terms of correctly classifying responders and nonresponders based on only one DCE-MRI examination. The results indicate that GCTT model’s PK parameters perform better than those of ETM, while the segmentation of the tumor regions of interest based on vascular heterogeneity further enhances the discriminatory power of the GCTT model. Libertas Academica 2015-08-12 /pmc/articles/PMC4536783/ /pubmed/26327778 http://dx.doi.org/10.4137/CIN.S19342 Text en © 2015 the author(s), publisher and licensee Libertas Academica Ltd. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License. |
spellingShingle | Original Research Kontopodis, Eleftherios Kanli, Georgia Manikis, Georgios C Van Cauter, Sofie Marias, Kostas Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data |
title | Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data |
title_full | Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data |
title_fullStr | Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data |
title_full_unstemmed | Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data |
title_short | Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data |
title_sort | assessing treatment response through generalized pharmacokinetic modeling of dce-mri data |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536783/ https://www.ncbi.nlm.nih.gov/pubmed/26327778 http://dx.doi.org/10.4137/CIN.S19342 |
work_keys_str_mv | AT kontopodiseleftherios assessingtreatmentresponsethroughgeneralizedpharmacokineticmodelingofdcemridata AT kanligeorgia assessingtreatmentresponsethroughgeneralizedpharmacokineticmodelingofdcemridata AT manikisgeorgiosc assessingtreatmentresponsethroughgeneralizedpharmacokineticmodelingofdcemridata AT vancautersofie assessingtreatmentresponsethroughgeneralizedpharmacokineticmodelingofdcemridata AT mariaskostas assessingtreatmentresponsethroughgeneralizedpharmacokineticmodelingofdcemridata |