Cargando…
PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop
Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than non-tumor cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a/c-Myc/hnRNPA1/PKM2 signaling in glioma cell glucose metabolism. PKM2 depletion...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536995/ https://www.ncbi.nlm.nih.gov/pubmed/25948776 |
Sumario: | Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than non-tumor cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a/c-Myc/hnRNPA1/PKM2 signaling in glioma cell glucose metabolism. PKM2 depletion via siRNA inhibits cell proliferation and aerobic glycolysis in glioma cells. C-Myc promotes up-regulation of hnRNPA1 expression, hnRNPA1 binding to PKM pre-mRNA, and the subsequent formation of PKM2. This pathway is downregulated by the microRNA let-7a, which functionally targets c-Myc, whereas hnRNPA1 blocks the biogenesis of let-7a to counteract its ability to downregulate the c-Myc/hnRNPA1/PKM2 signaling pathway. The down-regulation of c-Myc/hnRNPA1/PKM2 by let-7a is verified using a glioma xenograft model. These results suggest that let-7a, c-Myc and hnRNPA1 from a feedback loop, thereby regulating PKM2 expression to modulate glucose metabolism of glioma cells. These findings elucidate a new pathway mediating aerobic glycolysis in gliomas and provide an attractive potential target for therapeutic intervention. |
---|