Cargando…

N-Acetyl Cysteine (NAC)-Directed Detoxification of Methacryloxylethyl Cetyl Ammonium Chloride (DMAE-CB)

Methacryloxylethyl cetyl ammonium chloride (DMAE-CB) is a polymerizable antibacterial monomer and has been proved as an effective strategy to achieve bioactive bonding with reliable bacterial inhibitory effects. However, the toxicity of DMAE-CB may hamper its wide application in clinical situations....

Descripción completa

Detalles Bibliográficos
Autores principales: Jiao, Yang, Ma, Sai, Li, Jing, Shan, Lequn, Wang, Yingjie, Tian, Min, Yang, Yanwei, Sun, Jinlong, Ban, Jinghao, Chen, Jihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537128/
https://www.ncbi.nlm.nih.gov/pubmed/26274909
http://dx.doi.org/10.1371/journal.pone.0135815
Descripción
Sumario:Methacryloxylethyl cetyl ammonium chloride (DMAE-CB) is a polymerizable antibacterial monomer and has been proved as an effective strategy to achieve bioactive bonding with reliable bacterial inhibitory effects. However, the toxicity of DMAE-CB may hamper its wide application in clinical situations. Thus, this study was designed to investigate the toxicity of DMAE-CB and explore the possible protective effects of N-acetyl cysteine (NAC). High performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analysis showed that chemical binding of NAC and DMAE-CB occurred in a time dependent manner. Pre-incubation of fourty-eight hours is required for adequate reaction between DMAE-CB and NAC. DMAE-CB reduced human dental pulp cells (hDPCs) viability in a dose-dependent manner. The toxic effects of DMAE-CB were accompanied by increased reactive oxygen species (ROS) level and reduced glutathione (GSH) content. NAC alleviated DMAE-CB-induced oxidative stress. Annexin V/ Propidium Iodide (PI) staining and Hoechst 33342 staining indicated that DMAE-CB induced apoptosis. Collapsed mitochondrial membrane potential (MMP) and activation of caspase-3 were also observed after DMAE-CB treatment. NAC rescued hDPCs from DMAE-CB-induced apoptosis, accompanied by lower level of MMP loss and caspase-3 activity. This study assists to elucidate the mechanism underlying the cytotoxic effects of DMAE-CB and provides theoretical supports for the searching of effective strategies to reduce toxicity of quaternary ammonium dental monomers.