Cargando…
Microarray and Proteomic Analyses of Myeloproliferative Neoplasms with a Highlight on the mTOR Signaling Pathway
The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression p...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537205/ https://www.ncbi.nlm.nih.gov/pubmed/26275051 http://dx.doi.org/10.1371/journal.pone.0135463 |
Sumario: | The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34(+) cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34(+) cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34(+) cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34(+) cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34(+) cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34(+) cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling. |
---|