Cargando…
Identification of Adverse Drug Events from Free Text Electronic Patient Records and Information in a Large Mental Health Case Register
OBJECTIVES: Electronic healthcare records (EHRs) are a rich source of information, with huge potential for secondary research use. The aim of this study was to develop an application to identify instances of Adverse Drug Events (ADEs) from free text psychiatric EHRs. METHODS: We used the GATE Natura...
Autores principales: | Iqbal, Ehtesham, Mallah, Robbie, Jackson, Richard George, Ball, Michael, Ibrahim, Zina M., Broadbent, Matthew, Dzahini, Olubanke, Stewart, Robert, Johnston, Caroline, Dobson, Richard J. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537312/ https://www.ncbi.nlm.nih.gov/pubmed/26273830 http://dx.doi.org/10.1371/journal.pone.0134208 |
Ejemplares similares
-
ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records
por: Iqbal, Ehtesham, et al.
Publicado: (2017) -
Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2017) -
Author Correction: Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2018) -
The side effect profile of Clozapine in real world data of three large mental health hospitals
por: Iqbal, Ehtesham, et al.
Publicado: (2020) -
Efficient Reuse of Natural Language Processing Models for Phenotype-Mention Identification in Free-text Electronic Medical Records: A Phenotype Embedding Approach
por: Wu, Honghan, et al.
Publicado: (2019)