Cargando…

Targeting the Glucose Regulated Protein-78 (GRP78) abrogates Pten-null driven AKT-activation and endometrioid tumorigenesis

Rates of the most common gynecologic cancer, endometrioid adenocarcinoma (EAC), continue to rise, mirroring the global epidemic of obesity, a well-known EAC risk factor. Thus, identifying novel molecular targets to prevent and/or mitigate EAC is imperative. The prevalent Type 1 EAC commonly harbors...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yvonne G., Shen, Jieli, Yoo, Eunjeong, Liu, Ren, Yen, Hai-Yun, Mehta, Arjun, Rajaei, Atefeh, Yang, Wangrong, Mhawech-Fauceglia, Paulette, DeMayo, Francesco J., Lydon, John, Gill, Parkash, Lee, Amy S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537850/
https://www.ncbi.nlm.nih.gov/pubmed/25684138
http://dx.doi.org/10.1038/onc.2015.4
Descripción
Sumario:Rates of the most common gynecologic cancer, endometrioid adenocarcinoma (EAC), continue to rise, mirroring the global epidemic of obesity, a well-known EAC risk factor. Thus, identifying novel molecular targets to prevent and/or mitigate EAC is imperative. The prevalent Type 1 EAC commonly harbors loss of the tumor suppressor, Pten, leading to AKT activation. The major endoplasmic reticulum (ER) chaperone, GRP78, is a potent pro-survival protein to maintain ER homeostasis, and as a cell surface protein, is known to regulate the PI3K/AKT pathway. To determine whether targeting GRP78 could suppress EAC development, we created a conditional knockout mouse model utilizing progesterone receptor (PR)-Cre-recombinase to achieve Pten and Grp78 (cPten(f/f)Grp78(f/f)) deletion in the endometrial epithelium. Mice with a single Pten (cPten(f/f)) deletion developed well-differentiated EAC by 4 weeks. In contrast, no cPten(f/f)Grp78(f/f) mice developed EAC, even after more than 8 months of observation. Histologic examination of uteri from cPten(f/f)Grp78(f/f) mice also revealed no complex atypical hyperplasia (CAH), a well-established EAC precursor. These histologic observations among the cPten(f/f)Grp78(f/f) murine uteri also corresponded to abrogation of AKT activation within the endometrium. We further observed that GRP78 co-localized with activated AKT on the surface of EAC thus providing an opportunity for therapeutic targeting. Consistent with previous findings that cell surface GRP78 is an upstream regulator of PI3K/AKT signaling, we show here that in vivo short-term systemic treatment with a highly specific monoclonal antibody against GRP78 suppressed AKT activation and increased apoptosis in the cPten(f/f) tumors. Collectively, these findings present GRP78-targeting therapy as an efficacious therapeutic option for EAC.