Cargando…
Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions
The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538242/ https://www.ncbi.nlm.nih.gov/pubmed/26347758 http://dx.doi.org/10.3389/fpls.2015.00639 |
_version_ | 1782385969498947584 |
---|---|
author | Vos, Irene A. Moritz, Liselotte Pieterse, Corné M. J. Van Wees, Saskia C. M. |
author_facet | Vos, Irene A. Moritz, Liselotte Pieterse, Corné M. J. Van Wees, Saskia C. M. |
author_sort | Vos, Irene A. |
collection | PubMed |
description | The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA) are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses. |
format | Online Article Text |
id | pubmed-4538242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45382422015-09-07 Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions Vos, Irene A. Moritz, Liselotte Pieterse, Corné M. J. Van Wees, Saskia C. M. Front Plant Sci Plant Science The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA) are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses. Frontiers Media S.A. 2015-08-17 /pmc/articles/PMC4538242/ /pubmed/26347758 http://dx.doi.org/10.3389/fpls.2015.00639 Text en Copyright © 2015 Vos, Moritz, Pieterse and Van Wees. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Vos, Irene A. Moritz, Liselotte Pieterse, Corné M. J. Van Wees, Saskia C. M. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
title | Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
title_full | Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
title_fullStr | Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
title_full_unstemmed | Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
title_short | Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
title_sort | impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538242/ https://www.ncbi.nlm.nih.gov/pubmed/26347758 http://dx.doi.org/10.3389/fpls.2015.00639 |
work_keys_str_mv | AT vosirenea impactofhormonalcrosstalkonplantresistanceandfitnessundermultiattackerconditions AT moritzliselotte impactofhormonalcrosstalkonplantresistanceandfitnessundermultiattackerconditions AT pietersecornemj impactofhormonalcrosstalkonplantresistanceandfitnessundermultiattackerconditions AT vanweessaskiacm impactofhormonalcrosstalkonplantresistanceandfitnessundermultiattackerconditions |