Cargando…

Genotoxic Effect in Autoimmune Diseases Evaluated by the Micronucleus Test Assay: Our Experience and Literature Review

Autoimmune diseases (AD) are classified into organ-specific, systemic, and mixed; all forms of AD share a high risk for cancer development. In AD a destructive immune response induced by autoreactive lymphocytes is started and continues with the production of autoantibodies against different targets...

Descripción completa

Detalles Bibliográficos
Autores principales: Torres-Bugarín, Olivia, Macriz Romero, Nicole, Ramos Ibarra, María Luisa, Flores-García, Aurelio, Valdez Aburto, Penélope, Zavala-Cerna, María Guadalupe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538408/
https://www.ncbi.nlm.nih.gov/pubmed/26339592
http://dx.doi.org/10.1155/2015/194031
Descripción
Sumario:Autoimmune diseases (AD) are classified into organ-specific, systemic, and mixed; all forms of AD share a high risk for cancer development. In AD a destructive immune response induced by autoreactive lymphocytes is started and continues with the production of autoantibodies against different targets; furthermore apoptosis failure and loss of balance in oxidative stress as a consequence of local or systemic inflammation are common features seen in AD as well. Micronucleus (MN) assay can be performed in order to evaluate loss of genetic material in a clear, accurate, fast, simple, and minimally invasive test. The MN formation in the cytoplasm of cells that have undergone proliferation is a consequence of DNA fragmentation during mitosis and the appearance of small additional nuclei during interphase. The MN test, widely accepted for in vitro and in vivo genotoxicity research, provides a sensitive marker of genomic damage associated to diverse conditions. In here, we present a review of our work and other published papers concerning genotoxic effect in AD, identified by means of the MN assay, with the aim of proposing this tool as a possible early biomarker for genotoxic damage, which is a consequence of disease progression. Additionally this biomarker could be used for follow-up, to asses genome damage associated to therapies.