Cargando…
AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model
Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of pr...
Autores principales: | Ma, Jianzhu, Wang, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538422/ https://www.ncbi.nlm.nih.gov/pubmed/26339631 http://dx.doi.org/10.1155/2015/678764 |
Ejemplares similares
-
PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility
por: Fan, Chao, et al.
Publicado: (2016) -
A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
por: Deng, Lei, et al.
Publicado: (2017) -
Enzyme Commission Number Prediction and Benchmarking with Hierarchical Dual-core Multitask Learning Framework
por: Shi, Zhenkun, et al.
Publicado: (2023) -
A Multitask Deep Learning Framework for DNER
por: Jin, Ran, et al.
Publicado: (2022) -
DeepConPred2: An Improved Method for the Prediction of Protein Residue Contacts
por: Ding, Wenze, et al.
Publicado: (2018)