Cargando…
Interleukin-27 Protects Cardiomyocyte-Like H9c2 Cells against Metabolic Syndrome: Role of STAT3 Signaling
The present results demonstrated that high glucose (G), salt (S), and cholesterol C (either alone or in combination), as mimicking extracellular changes in metabolic syndrome, damage cardiomyocyte-like H9c2 cells and reduce their viability in a time-dependent manner. However, the effects were greate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538580/ https://www.ncbi.nlm.nih.gov/pubmed/26339633 http://dx.doi.org/10.1155/2015/689614 |
Sumario: | The present results demonstrated that high glucose (G), salt (S), and cholesterol C (either alone or in combination), as mimicking extracellular changes in metabolic syndrome, damage cardiomyocyte-like H9c2 cells and reduce their viability in a time-dependent manner. However, the effects were greatest when cells were exposed to all three agents (GSC). The mRNA of glycoprotein (gp) 130 and WSX-1, both components of the interleukin (IL)-27 receptor, were present in H9c2 cells. Although mRNA expression was not affected by exogenous treatment with IL-27, the expression of gp130 mRNA (but not that of WSX-1 mRNA) was attenuated by GSC. Treatment of IL-27 to H9c2 cells increased activation of signal transducer and activator of transcription 3 (STAT3) and protected cells from GSC-induced cytochrome c release and cell damage. The protective effects of IL-27 were abrogated by the STAT3 inhibitor, stattic. The results of the present study clearly demonstrate that the STAT3 pathway triggered by anti-inflammatory IL-27 plays a role in protecting cardiomyocytes against GSC-mediated damage. |
---|