Cargando…

Incremental Discriminant Analysis in Tensor Space

To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorith...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Liu, Weidong, Zhao, Tao, Yan, Qiang, Pu, Xiaodan, Du
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538590/
https://www.ncbi.nlm.nih.gov/pubmed/26339229
http://dx.doi.org/10.1155/2015/587923
Descripción
Sumario:To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently.