Cargando…
Incremental Discriminant Analysis in Tensor Space
To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorith...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538590/ https://www.ncbi.nlm.nih.gov/pubmed/26339229 http://dx.doi.org/10.1155/2015/587923 |
_version_ | 1782386012538798080 |
---|---|
author | Chang, Liu Weidong, Zhao Tao, Yan Qiang, Pu Xiaodan, Du |
author_facet | Chang, Liu Weidong, Zhao Tao, Yan Qiang, Pu Xiaodan, Du |
author_sort | Chang, Liu |
collection | PubMed |
description | To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. |
format | Online Article Text |
id | pubmed-4538590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-45385902015-09-03 Incremental Discriminant Analysis in Tensor Space Chang, Liu Weidong, Zhao Tao, Yan Qiang, Pu Xiaodan, Du Comput Intell Neurosci Research Article To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. Hindawi Publishing Corporation 2015 2015-08-03 /pmc/articles/PMC4538590/ /pubmed/26339229 http://dx.doi.org/10.1155/2015/587923 Text en Copyright © 2015 Liu Chang et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chang, Liu Weidong, Zhao Tao, Yan Qiang, Pu Xiaodan, Du Incremental Discriminant Analysis in Tensor Space |
title | Incremental Discriminant Analysis in Tensor Space |
title_full | Incremental Discriminant Analysis in Tensor Space |
title_fullStr | Incremental Discriminant Analysis in Tensor Space |
title_full_unstemmed | Incremental Discriminant Analysis in Tensor Space |
title_short | Incremental Discriminant Analysis in Tensor Space |
title_sort | incremental discriminant analysis in tensor space |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538590/ https://www.ncbi.nlm.nih.gov/pubmed/26339229 http://dx.doi.org/10.1155/2015/587923 |
work_keys_str_mv | AT changliu incrementaldiscriminantanalysisintensorspace AT weidongzhao incrementaldiscriminantanalysisintensorspace AT taoyan incrementaldiscriminantanalysisintensorspace AT qiangpu incrementaldiscriminantanalysisintensorspace AT xiaodandu incrementaldiscriminantanalysisintensorspace |