Cargando…

Incremental Discriminant Analysis in Tensor Space

To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorith...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Liu, Weidong, Zhao, Tao, Yan, Qiang, Pu, Xiaodan, Du
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538590/
https://www.ncbi.nlm.nih.gov/pubmed/26339229
http://dx.doi.org/10.1155/2015/587923
_version_ 1782386012538798080
author Chang, Liu
Weidong, Zhao
Tao, Yan
Qiang, Pu
Xiaodan, Du
author_facet Chang, Liu
Weidong, Zhao
Tao, Yan
Qiang, Pu
Xiaodan, Du
author_sort Chang, Liu
collection PubMed
description To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently.
format Online
Article
Text
id pubmed-4538590
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-45385902015-09-03 Incremental Discriminant Analysis in Tensor Space Chang, Liu Weidong, Zhao Tao, Yan Qiang, Pu Xiaodan, Du Comput Intell Neurosci Research Article To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. Hindawi Publishing Corporation 2015 2015-08-03 /pmc/articles/PMC4538590/ /pubmed/26339229 http://dx.doi.org/10.1155/2015/587923 Text en Copyright © 2015 Liu Chang et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chang, Liu
Weidong, Zhao
Tao, Yan
Qiang, Pu
Xiaodan, Du
Incremental Discriminant Analysis in Tensor Space
title Incremental Discriminant Analysis in Tensor Space
title_full Incremental Discriminant Analysis in Tensor Space
title_fullStr Incremental Discriminant Analysis in Tensor Space
title_full_unstemmed Incremental Discriminant Analysis in Tensor Space
title_short Incremental Discriminant Analysis in Tensor Space
title_sort incremental discriminant analysis in tensor space
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538590/
https://www.ncbi.nlm.nih.gov/pubmed/26339229
http://dx.doi.org/10.1155/2015/587923
work_keys_str_mv AT changliu incrementaldiscriminantanalysisintensorspace
AT weidongzhao incrementaldiscriminantanalysisintensorspace
AT taoyan incrementaldiscriminantanalysisintensorspace
AT qiangpu incrementaldiscriminantanalysisintensorspace
AT xiaodandu incrementaldiscriminantanalysisintensorspace