Cargando…

Hydrogen sulphide and mild hypothermia activate the CREB signaling pathway and prevent ischemia-reperfusion injury

BACKGROUND: Both hydrogen sulphide (H(2)S) and mild hypothermia have been reported to prevent brain damage caused by reperfusion assault through regulating the N-methyl-D-aspartate receptor (NMDAR). However, the relationship between the two treatments and how they exert neuro-protective effects thro...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Hai-bin, Ji, Xiangjun, Zhu, Si-hai, Hu, Yi-min, Zhang, Li-dong, Miao, Xiao-lei, Ma, Ru-Meng, Duan, Man-lin, Li, Wei-yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538757/
https://www.ncbi.nlm.nih.gov/pubmed/26283659
http://dx.doi.org/10.1186/s12871-015-0097-6
Descripción
Sumario:BACKGROUND: Both hydrogen sulphide (H(2)S) and mild hypothermia have been reported to prevent brain damage caused by reperfusion assault through regulating the N-methyl-D-aspartate receptor (NMDAR). However, the relationship between the two treatments and how they exert neuro-protective effects through NMDARs remain to be elucidated. METHODS: Transient cerebral ischemia was induced using the Pulsinelli four-vessel occlusion method. We used sodium hydrosulphide (NaHS) as the H(2)S donor. We randomly divided 100 Sprague–Dawley rats into five groups of 20: Sham operation group (Sh), normothermic (36-37 °C) ischemia group (NT), mild hypothermic (32-33 °C) ischemia group (mHT), normothermic ischemia combined with NaHS treatment group (NT + NaHS), and mild hypothermic ischemia combined with NaHS treatment group (mHT + NaHS). After 6 hrs of reperfusion, rats were decapitated and hippocampus samples were immediately collected. We measured NR2A (GluN1), NR2B (GluN2) and p-CREB protein levels using western blotting. We further analyzed BDNF mRNA expression by real-time PCR. Hematoxylin and eosin (HE) staining was used to examine pyramidal cell histology at the CA1 region. All statistical analyses were carried out by ANOVA and LSD t-test as implemented by the SPSS 13.0 software. RESULTS: In the four test groups with ischemia-reperfusion, hippocampal H(2)S concentration increased following treatment, and administration of NaHS further increased H(2)S levels. Moreover, administration of both NaHS and mild hypothermia resulted in up-regulation of NR2A and NR2B protein expressions, as well as p-CREB protein and BDNF mRNA levels. At the cellular level, NaHS and mild hypothermia groups exhibited lower damage caused by ischemia-reperfusion in the CA1 region of the hippocampus. The strongest protective effect was observed in rats treated with combined NaHS and mild hypothermia, suggesting their effects were additive. CONCLUSION: Our results support previous findings that hydrogen sulphide and mild hypothermia can prevent ischemia-reperfusion injury. Both treatments caused an up-regulation of NMDA receptors, as well as an elevation in p-CREB protein and BDNF mRNA levels. Thus, hydrogen sulphide and mild hypothermia may provide neuro-protective effect through activating the pro-survival CREB signaling pathway.