Cargando…
K-Profiles: A Nonlinear Clustering Method for Pattern Detection in High Dimensional Data
With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden pat...
Autores principales: | Wang, Kai, Zhao, Qing, Lu, Jianwei, Yu, Tianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538770/ https://www.ncbi.nlm.nih.gov/pubmed/26339652 http://dx.doi.org/10.1155/2015/918954 |
Ejemplares similares
-
Nonlinear Network Reconstruction from Gene Expression Data Using Marginal Dependencies Measured by DCOL
por: Liu, Haodong, et al.
Publicado: (2016) -
MeDiA: Mean Distance Association and Its Applications in Nonlinear Gene Set Analysis
por: Peng, Hesen, et al.
Publicado: (2015) -
Fault Detection and Isolation of Non-Gaussian and
Nonlinear Processes Based on Statistics Pattern Analysis and the k-Nearest Neighbor Method
por: Zhou, Zhe, et al.
Publicado: (2022) -
A hybrid anomaly detection method for high dimensional data
por: Zhang, Xin, et al.
Publicado: (2023) -
A general index for linear and nonlinear correlations for high dimensional genomic data
por: Yao, Zhihao, et al.
Publicado: (2020)