Cargando…
Functional Analysis and Characterization of Differential Coexpression Networks
Differential coexpression analysis is emerging as a complement to conventional differential gene expression analysis. The identified differential coexpression links can be assembled into a differential coexpression network (DCEN) in response to environmental stresses or genetic changes. Differential...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539605/ https://www.ncbi.nlm.nih.gov/pubmed/26282208 http://dx.doi.org/10.1038/srep13295 |
Sumario: | Differential coexpression analysis is emerging as a complement to conventional differential gene expression analysis. The identified differential coexpression links can be assembled into a differential coexpression network (DCEN) in response to environmental stresses or genetic changes. Differential coexpression analyses have been successfully used to identify condition-specific modules; however, the structural properties and biological significance of general DCENs have not been well investigated. Here, we analyzed two independent Saccharomyces cerevisiae DCENs constructed from large-scale time-course gene expression profiles in response to different situations. Topological analyses show that DCENs are tree-like networks possessing scale-free characteristics, but not small-world. Functional analyses indicate that differentially coexpressed gene pairs in DCEN tend to link different biological processes, achieving complementary or synergistic effects. Furthermore, the gene pairs lacking common transcription factors are sensitive to perturbation and hence lead to differential coexpression. Based on these observations, we integrated transcriptional regulatory information into DCEN and identified transcription factors that might cause differential coexpression by gain or loss of activation in response to different situations. Collectively, our results not only uncover the unique structural characteristics of DCEN but also provide new insights into interpretation of DCEN to reveal its biological significance and infer the underlying gene regulatory dynamics. |
---|