Cargando…
PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications
BACKGROUND: Most biological processes are influenced by protein post-translational modifications (PTMs). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availabil...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539857/ https://www.ncbi.nlm.nih.gov/pubmed/26283093 http://dx.doi.org/10.1186/s12864-015-1820-x |
_version_ | 1782386158512111616 |
---|---|
author | Chaudhuri, Rima Sadrieh, Arash Hoffman, Nolan J. Parker, Benjamin L. Humphrey, Sean J. Stöckli, Jacqueline Hill, Adam P. James, David E. Yang, Jean Yee Hwa |
author_facet | Chaudhuri, Rima Sadrieh, Arash Hoffman, Nolan J. Parker, Benjamin L. Humphrey, Sean J. Stöckli, Jacqueline Hill, Adam P. James, David E. Yang, Jean Yee Hwa |
author_sort | Chaudhuri, Rima |
collection | PubMed |
description | BACKGROUND: Most biological processes are influenced by protein post-translational modifications (PTMs). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availability of deep, quantitative datasets in diverse species, there is a growing need for tools to facilitate cross-species comparison of PTM data. This is particularly important because functionally important modification sites are more likely to be evolutionarily conserved; yet cross-species comparison of PTMs is difficult since they often lie in structurally disordered protein domains. Current tools that address this can only map known PTMs between species based on known orthologous phosphosites, and do not enable the cross-species mapping of newly identified modification sites. Here, we addressed this by developing a web-based software tool, PhosphOrtholog (www.phosphortholog.com) that accurately maps protein modification sites between different species. This facilitates the comparison of datasets derived from multiple species, and should be a valuable tool for the proteomics community. RESULTS: Here we describe PhosphOrtholog, a web-based application for mapping known and novel orthologous PTM sites from experimental data obtained from different species. PhosphOrtholog is the only generic and automated tool that enables cross-species comparison of large-scale PTM datasets without relying on existing PTM databases. This is achieved through pairwise sequence alignment of orthologous protein residues. To demonstrate its utility we apply it to two sets of human and rat muscle phosphoproteomes generated following insulin and exercise stimulation, respectively, and one publicly available mouse phosphoproteome following cellular stress revealing high mapping and coverage efficiency. Although coverage statistics are dataset dependent, PhosphOrtholog increased the number of cross-species mapped sites in all our example data sets by more than double when compared to those recovered using existing resources such as PhosphoSitePlus. CONCLUSIONS: PhosphOrtholog is the first tool that enables mapping of thousands of novel and known protein phosphorylation sites across species, accessible through an easy-to-use web interface. Identification of conserved PTMs across species from large-scale experimental data increases our knowledgebase of functional PTM sites. Moreover, PhosphOrtholog is generic being applicable to other PTM datasets such as acetylation, ubiquitination and methylation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1820-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4539857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45398572015-08-19 PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications Chaudhuri, Rima Sadrieh, Arash Hoffman, Nolan J. Parker, Benjamin L. Humphrey, Sean J. Stöckli, Jacqueline Hill, Adam P. James, David E. Yang, Jean Yee Hwa BMC Genomics Software BACKGROUND: Most biological processes are influenced by protein post-translational modifications (PTMs). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availability of deep, quantitative datasets in diverse species, there is a growing need for tools to facilitate cross-species comparison of PTM data. This is particularly important because functionally important modification sites are more likely to be evolutionarily conserved; yet cross-species comparison of PTMs is difficult since they often lie in structurally disordered protein domains. Current tools that address this can only map known PTMs between species based on known orthologous phosphosites, and do not enable the cross-species mapping of newly identified modification sites. Here, we addressed this by developing a web-based software tool, PhosphOrtholog (www.phosphortholog.com) that accurately maps protein modification sites between different species. This facilitates the comparison of datasets derived from multiple species, and should be a valuable tool for the proteomics community. RESULTS: Here we describe PhosphOrtholog, a web-based application for mapping known and novel orthologous PTM sites from experimental data obtained from different species. PhosphOrtholog is the only generic and automated tool that enables cross-species comparison of large-scale PTM datasets without relying on existing PTM databases. This is achieved through pairwise sequence alignment of orthologous protein residues. To demonstrate its utility we apply it to two sets of human and rat muscle phosphoproteomes generated following insulin and exercise stimulation, respectively, and one publicly available mouse phosphoproteome following cellular stress revealing high mapping and coverage efficiency. Although coverage statistics are dataset dependent, PhosphOrtholog increased the number of cross-species mapped sites in all our example data sets by more than double when compared to those recovered using existing resources such as PhosphoSitePlus. CONCLUSIONS: PhosphOrtholog is the first tool that enables mapping of thousands of novel and known protein phosphorylation sites across species, accessible through an easy-to-use web interface. Identification of conserved PTMs across species from large-scale experimental data increases our knowledgebase of functional PTM sites. Moreover, PhosphOrtholog is generic being applicable to other PTM datasets such as acetylation, ubiquitination and methylation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1820-x) contains supplementary material, which is available to authorized users. BioMed Central 2015-08-19 /pmc/articles/PMC4539857/ /pubmed/26283093 http://dx.doi.org/10.1186/s12864-015-1820-x Text en © Chaudhuri et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Software Chaudhuri, Rima Sadrieh, Arash Hoffman, Nolan J. Parker, Benjamin L. Humphrey, Sean J. Stöckli, Jacqueline Hill, Adam P. James, David E. Yang, Jean Yee Hwa PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
title | PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
title_full | PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
title_fullStr | PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
title_full_unstemmed | PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
title_short | PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
title_sort | phosphortholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539857/ https://www.ncbi.nlm.nih.gov/pubmed/26283093 http://dx.doi.org/10.1186/s12864-015-1820-x |
work_keys_str_mv | AT chaudhuririma phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT sadrieharash phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT hoffmannolanj phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT parkerbenjaminl phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT humphreyseanj phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT stocklijacqueline phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT hilladamp phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT jamesdavide phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications AT yangjeanyeehwa phosphorthologawebbasedtoolforcrossspeciesmappingoforthologousproteinposttranslationalmodifications |