Cargando…

Intersecting dilated convex polyhedra method for modeling complex particles in discrete element method

This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres,...

Descripción completa

Detalles Bibliográficos
Autores principales: Nye, Ben, Kulchitsky, Anton V, Johnson, Jerome B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540157/
https://www.ncbi.nlm.nih.gov/pubmed/26300584
http://dx.doi.org/10.1002/nag.2299
Descripción
Sumario:This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles.