Cargando…
Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry
BACKGROUND: Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540170/ https://www.ncbi.nlm.nih.gov/pubmed/26316743 http://dx.doi.org/10.2147/IJN.S84305 |
_version_ | 1782386208255508480 |
---|---|
author | Santos-Martinez, Maria J Tomaszewski, Krzysztof A Medina, Carlos Bazou, Despina Gilmer, John F Radomski, Marek W |
author_facet | Santos-Martinez, Maria J Tomaszewski, Krzysztof A Medina, Carlos Bazou, Despina Gilmer, John F Radomski, Marek W |
author_sort | Santos-Martinez, Maria J |
collection | PubMed |
description | BACKGROUND: Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. METHODS: Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. RESULTS: Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. CONCLUSION: NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A(2)-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for studying NP-induced microaggregation. |
format | Online Article Text |
id | pubmed-4540170 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45401702015-08-27 Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry Santos-Martinez, Maria J Tomaszewski, Krzysztof A Medina, Carlos Bazou, Despina Gilmer, John F Radomski, Marek W Int J Nanomedicine Original Research BACKGROUND: Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. METHODS: Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. RESULTS: Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. CONCLUSION: NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A(2)-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for studying NP-induced microaggregation. Dove Medical Press 2015-08-13 /pmc/articles/PMC4540170/ /pubmed/26316743 http://dx.doi.org/10.2147/IJN.S84305 Text en © 2015 Santos-Martinez et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Santos-Martinez, Maria J Tomaszewski, Krzysztof A Medina, Carlos Bazou, Despina Gilmer, John F Radomski, Marek W Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
title | Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
title_full | Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
title_fullStr | Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
title_full_unstemmed | Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
title_short | Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
title_sort | pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540170/ https://www.ncbi.nlm.nih.gov/pubmed/26316743 http://dx.doi.org/10.2147/IJN.S84305 |
work_keys_str_mv | AT santosmartinezmariaj pharmacologicalcharacterizationofnanoparticleinducedplateletmicroaggregationusingquartzcrystalmicrobalancewithdissipationcomparisonwithlightaggregometry AT tomaszewskikrzysztofa pharmacologicalcharacterizationofnanoparticleinducedplateletmicroaggregationusingquartzcrystalmicrobalancewithdissipationcomparisonwithlightaggregometry AT medinacarlos pharmacologicalcharacterizationofnanoparticleinducedplateletmicroaggregationusingquartzcrystalmicrobalancewithdissipationcomparisonwithlightaggregometry AT bazoudespina pharmacologicalcharacterizationofnanoparticleinducedplateletmicroaggregationusingquartzcrystalmicrobalancewithdissipationcomparisonwithlightaggregometry AT gilmerjohnf pharmacologicalcharacterizationofnanoparticleinducedplateletmicroaggregationusingquartzcrystalmicrobalancewithdissipationcomparisonwithlightaggregometry AT radomskimarekw pharmacologicalcharacterizationofnanoparticleinducedplateletmicroaggregationusingquartzcrystalmicrobalancewithdissipationcomparisonwithlightaggregometry |