Cargando…

Discrimination of the commercial Korean native chicken population using microsatellite markers

BACKGROUND: Korean native chicken (KNC) is a well-known breed due to its superior meat taste. This breed, however, owing to a low growth rate, has a high market price. In order to overcome this disadvantage, the National Institute of Animal Science (NIAS) in Korea developed a commercial KNC breed, n...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Nu Ri, Seo, Dong Won, Jemaa, Slim Ben, Sultana, Hasina, Heo, Kang Nyeong, Jo, Cheorun, Lee, Jun Heon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540261/
https://www.ncbi.nlm.nih.gov/pubmed/26290725
http://dx.doi.org/10.1186/s40781-015-0044-6
Descripción
Sumario:BACKGROUND: Korean native chicken (KNC) is a well-known breed due to its superior meat taste. This breed, however, owing to a low growth rate, has a high market price. In order to overcome this disadvantage, the National Institute of Animal Science (NIAS) in Korea developed a commercial KNC breed, named Woorimatdag version 2 (WM2), an upgraded version of the Woorimatdag (WM1) breed and the WM2 was created by crossing the KNC with meat type breeds. This study aims to discriminate between WM2 and other chicken breeds using microsatellite (MS) markers. METHODS: A total of 302 individuals from eight Korean chicken populations were examined. The genetic diversity and population structure analysis were investigated using Cervus, API-CALC, STRUCTURE, PowerMarker programs. RESULTS: Based on heterozygosity and polymorphic information content (PIC) values, 30 MS markers were initially selected from 150 markers. The identified average number of alleles (Na), expected heterozygosity, and PIC values for the WM2 samples were 7.17, 0.741, and 0.682, respectively. Additionally, the paternity of individuals was assigned with a success rate of greater than 99% using 12 markers, the best minimum number of markers. The 12 selected markers contained heterozygosity and PIC values above 0.7 and probability of identity values around zero. Using these markers, the determined probability of identity (PI), PI(half-sibs), and PI(sibs) values were 3.23E-33, 5.03E-22, and 8.61E-08, respectively. CONCLUSIONS: WM2 is well differentiated with respect to other chicken breeds based on estimated genetic distances. The results presented here will contribute to the identification of commercial WM2 chicken in the market. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40781-015-0044-6) contains supplementary material, which is available to authorized users.