Cargando…
The Interaction of FABP with Kapα
Gene-activating lipophilic compounds are carried into the nucleus when loaded on fatty-acid-binding proteins (FABP). Some of these proteins are recognized by the α-Karyopherin (Kapα) through its nuclear localization signal (NLS) consisting of three positive residues that are not in a continuous sequ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540411/ https://www.ncbi.nlm.nih.gov/pubmed/26284534 http://dx.doi.org/10.1371/journal.pone.0132138 |
_version_ | 1782386236006072320 |
---|---|
author | Amber-Vitos, Ortal Kucherenko, Nataly Nachliel, Esther Gutman, Menachem Tsfadia, Yossi |
author_facet | Amber-Vitos, Ortal Kucherenko, Nataly Nachliel, Esther Gutman, Menachem Tsfadia, Yossi |
author_sort | Amber-Vitos, Ortal |
collection | PubMed |
description | Gene-activating lipophilic compounds are carried into the nucleus when loaded on fatty-acid-binding proteins (FABP). Some of these proteins are recognized by the α-Karyopherin (Kapα) through its nuclear localization signal (NLS) consisting of three positive residues that are not in a continuous sequence. The Importin system can distinguish between FABP loaded with activating and non-activating compounds. In the present study, we introduced molecular dynamics as a tool for clarifying the mechanism by which FABP4, loaded with activating ligand (linoleate) is recognized by Kapα. In the first phase, we simulated the complex between Kapα(ΔIBB) (termed “Armadillo”) that was crystallized with two NLS hepta-peptides. The trajectory revealed that the crystal-structure orientation of the peptides is rapidly lost and new interactions dominate. Though, the NLS sequence of FABP4 is cryptic, since the functional residues are not in direct sequence, implicating more than one possible conformation. Therefore, four possible docked conformations were generated, in which the NLS of FABP4 is interacting with either the major or the minor sites of Kapα, and the N → C vectors are parallel or anti-parallel. Out of these four basic starting positions, only the FABP4-minor site complex exhibited a large number of contact points. In this complex, the FABP interacts with the minor and the major sites, suppressing the self-inhibitory interaction of the Kapα, rendering it free to react with Kapβ. Finally, we propose that the transportable conformation generated an extended hydrophobic domain which expanded out of the boundary of the FABP4, allowing the loaded linoleate to partially migrate out of the FABP into a joint complex in which the Kapα contributes part of a combined binding pocket. |
format | Online Article Text |
id | pubmed-4540411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45404112015-08-24 The Interaction of FABP with Kapα Amber-Vitos, Ortal Kucherenko, Nataly Nachliel, Esther Gutman, Menachem Tsfadia, Yossi PLoS One Research Article Gene-activating lipophilic compounds are carried into the nucleus when loaded on fatty-acid-binding proteins (FABP). Some of these proteins are recognized by the α-Karyopherin (Kapα) through its nuclear localization signal (NLS) consisting of three positive residues that are not in a continuous sequence. The Importin system can distinguish between FABP loaded with activating and non-activating compounds. In the present study, we introduced molecular dynamics as a tool for clarifying the mechanism by which FABP4, loaded with activating ligand (linoleate) is recognized by Kapα. In the first phase, we simulated the complex between Kapα(ΔIBB) (termed “Armadillo”) that was crystallized with two NLS hepta-peptides. The trajectory revealed that the crystal-structure orientation of the peptides is rapidly lost and new interactions dominate. Though, the NLS sequence of FABP4 is cryptic, since the functional residues are not in direct sequence, implicating more than one possible conformation. Therefore, four possible docked conformations were generated, in which the NLS of FABP4 is interacting with either the major or the minor sites of Kapα, and the N → C vectors are parallel or anti-parallel. Out of these four basic starting positions, only the FABP4-minor site complex exhibited a large number of contact points. In this complex, the FABP interacts with the minor and the major sites, suppressing the self-inhibitory interaction of the Kapα, rendering it free to react with Kapβ. Finally, we propose that the transportable conformation generated an extended hydrophobic domain which expanded out of the boundary of the FABP4, allowing the loaded linoleate to partially migrate out of the FABP into a joint complex in which the Kapα contributes part of a combined binding pocket. Public Library of Science 2015-08-18 /pmc/articles/PMC4540411/ /pubmed/26284534 http://dx.doi.org/10.1371/journal.pone.0132138 Text en © 2015 Amber-Vitos et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Amber-Vitos, Ortal Kucherenko, Nataly Nachliel, Esther Gutman, Menachem Tsfadia, Yossi The Interaction of FABP with Kapα |
title | The Interaction of FABP with Kapα |
title_full | The Interaction of FABP with Kapα |
title_fullStr | The Interaction of FABP with Kapα |
title_full_unstemmed | The Interaction of FABP with Kapα |
title_short | The Interaction of FABP with Kapα |
title_sort | interaction of fabp with kapα |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540411/ https://www.ncbi.nlm.nih.gov/pubmed/26284534 http://dx.doi.org/10.1371/journal.pone.0132138 |
work_keys_str_mv | AT ambervitosortal theinteractionoffabpwithkapa AT kucherenkonataly theinteractionoffabpwithkapa AT nachlielesther theinteractionoffabpwithkapa AT gutmanmenachem theinteractionoffabpwithkapa AT tsfadiayossi theinteractionoffabpwithkapa AT ambervitosortal interactionoffabpwithkapa AT kucherenkonataly interactionoffabpwithkapa AT nachlielesther interactionoffabpwithkapa AT gutmanmenachem interactionoffabpwithkapa AT tsfadiayossi interactionoffabpwithkapa |