Cargando…

PubChem atom environments

BACKGROUND: Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the rela...

Descripción completa

Detalles Bibliográficos
Autores principales: Hähnke, Volker D, Bolton, Evan E, Bryant, Stephen H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540750/
https://www.ncbi.nlm.nih.gov/pubmed/26300985
http://dx.doi.org/10.1186/s13321-015-0076-4
_version_ 1782386280201453568
author Hähnke, Volker D
Bolton, Evan E
Bryant, Stephen H
author_facet Hähnke, Volker D
Bolton, Evan E
Bryant, Stephen H
author_sort Hähnke, Volker D
collection PubMed
description BACKGROUND: Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? RESULTS: For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many seemingly due to erroneous interpretation of structures from patent data. Compared to fragmentation statistics published 40 years ago, the exponential growth in chemistry is mirrored in a nearly eightfold increase in the number of unique chemical fragments; however, this result is clearly an upper bound estimate as earlier studies employed structure sampling approaches and this study shows that a relatively high rate of atom fragments are found in only a single chemical structure (singletons). In addition, the percentage of singletons grows as the size of the chemical fragment is increased. CONCLUSIONS: The observed growth of the numbers of unique fragments over time suggests that many chemically possible connections of atom types to larger fragments have yet to be explored by chemists. A dramatic drop in the relative rate of increase of atom environments from smaller to larger fragments shows that larger fragments mainly consist of diverse combinations of a limited subset of smaller fragments. This is further supported by the observed concomitant increase of singleton atom environments. Combined, these findings suggest that there is considerable opportunity for chemists to combine known fragments to novel chemical compounds. The comparison of PubChem to an older study of known chemical structures shows noticeable differences. The changes suggest advances in synthetic capabilities of chemists to combine atoms in new patterns. Log–log plots of fragment incidence show small numbers of fragments are found in many structures and that large numbers of fragments are found in very few structures, with nearly half being novel using the methods in this work. The relative decrease in the count of new fragments as a function of size further suggests considerable opportunity for more novel chemicals exists. Lastly, the differences in atom environment diversity between PubChem Substance and Compound showcase the effect of PubChem standardization protocols, but also indicate that a normalization procedure for atom types, functional groups, and tautomeric/resonance forms based on atom environments is possible. The complete sets of atom types and atom environments are supplied as supporting information. GRAPHICAL ABSTRACT: [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13321-015-0076-4) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4540750
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-45407502015-08-21 PubChem atom environments Hähnke, Volker D Bolton, Evan E Bryant, Stephen H J Cheminform Research Article BACKGROUND: Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? RESULTS: For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many seemingly due to erroneous interpretation of structures from patent data. Compared to fragmentation statistics published 40 years ago, the exponential growth in chemistry is mirrored in a nearly eightfold increase in the number of unique chemical fragments; however, this result is clearly an upper bound estimate as earlier studies employed structure sampling approaches and this study shows that a relatively high rate of atom fragments are found in only a single chemical structure (singletons). In addition, the percentage of singletons grows as the size of the chemical fragment is increased. CONCLUSIONS: The observed growth of the numbers of unique fragments over time suggests that many chemically possible connections of atom types to larger fragments have yet to be explored by chemists. A dramatic drop in the relative rate of increase of atom environments from smaller to larger fragments shows that larger fragments mainly consist of diverse combinations of a limited subset of smaller fragments. This is further supported by the observed concomitant increase of singleton atom environments. Combined, these findings suggest that there is considerable opportunity for chemists to combine known fragments to novel chemical compounds. The comparison of PubChem to an older study of known chemical structures shows noticeable differences. The changes suggest advances in synthetic capabilities of chemists to combine atoms in new patterns. Log–log plots of fragment incidence show small numbers of fragments are found in many structures and that large numbers of fragments are found in very few structures, with nearly half being novel using the methods in this work. The relative decrease in the count of new fragments as a function of size further suggests considerable opportunity for more novel chemicals exists. Lastly, the differences in atom environment diversity between PubChem Substance and Compound showcase the effect of PubChem standardization protocols, but also indicate that a normalization procedure for atom types, functional groups, and tautomeric/resonance forms based on atom environments is possible. The complete sets of atom types and atom environments are supplied as supporting information. GRAPHICAL ABSTRACT: [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13321-015-0076-4) contains supplementary material, which is available to authorized users. Springer International Publishing 2015-08-19 /pmc/articles/PMC4540750/ /pubmed/26300985 http://dx.doi.org/10.1186/s13321-015-0076-4 Text en © Hähnke et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Hähnke, Volker D
Bolton, Evan E
Bryant, Stephen H
PubChem atom environments
title PubChem atom environments
title_full PubChem atom environments
title_fullStr PubChem atom environments
title_full_unstemmed PubChem atom environments
title_short PubChem atom environments
title_sort pubchem atom environments
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540750/
https://www.ncbi.nlm.nih.gov/pubmed/26300985
http://dx.doi.org/10.1186/s13321-015-0076-4
work_keys_str_mv AT hahnkevolkerd pubchematomenvironments
AT boltonevane pubchematomenvironments
AT bryantstephenh pubchematomenvironments