Cargando…
Changes in corticospinal excitability with short-duration high-frequency electrical muscle stimulation: a transcranial magnetic stimulation study
[Purpose] Afferent input caused by electrical stimulation of a peripheral nerve or a muscle modulates corticospinal excitability. However, a long duration of stimulation is required to induce these effects. The purpose of this study was to investigate the effect of short-duration high-frequency elec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society of Physical Therapy Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540830/ https://www.ncbi.nlm.nih.gov/pubmed/26311936 http://dx.doi.org/10.1589/jpts.27.2117 |
_version_ | 1782386293725986816 |
---|---|
author | Miyata, Kazuhiro Usuda, Shigeru |
author_facet | Miyata, Kazuhiro Usuda, Shigeru |
author_sort | Miyata, Kazuhiro |
collection | PubMed |
description | [Purpose] Afferent input caused by electrical stimulation of a peripheral nerve or a muscle modulates corticospinal excitability. However, a long duration of stimulation is required to induce these effects. The purpose of this study was to investigate the effect of short-duration high-frequency electrical muscle stimulation (EMS) on corticospinal excitability through the measurement of motor evoked potentials (MEP) in young healthy subjects. [Subjects] Eleven healthy right-handed subjects participated in this study. [Methods] EMS was applied to the abductor pollicis brevis (APB) muscle at 100 Hz with a pulse width of 100 μs for 120 s. The intensity of stimulation was just below the motor threshold. Transcranial magnetic stimulation was applied over the motor cortex, and MEP were recorded from the APB before, and immediately, 10, and 20 min after EMS. [Results] In the APB muscle, the MEP amplitude significantly decreased after EMS, and this effect lasted for 20 min. [Conclusion] The excitability of the corticospinal tract decreased after short-duration high-frequency EMS, and the effect lasted for 20 min. These results suggest that even short duration EMS can change the excitability of the corticospinal tract. |
format | Online Article Text |
id | pubmed-4540830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Society of Physical Therapy Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45408302015-08-26 Changes in corticospinal excitability with short-duration high-frequency electrical muscle stimulation: a transcranial magnetic stimulation study Miyata, Kazuhiro Usuda, Shigeru J Phys Ther Sci Original Article [Purpose] Afferent input caused by electrical stimulation of a peripheral nerve or a muscle modulates corticospinal excitability. However, a long duration of stimulation is required to induce these effects. The purpose of this study was to investigate the effect of short-duration high-frequency electrical muscle stimulation (EMS) on corticospinal excitability through the measurement of motor evoked potentials (MEP) in young healthy subjects. [Subjects] Eleven healthy right-handed subjects participated in this study. [Methods] EMS was applied to the abductor pollicis brevis (APB) muscle at 100 Hz with a pulse width of 100 μs for 120 s. The intensity of stimulation was just below the motor threshold. Transcranial magnetic stimulation was applied over the motor cortex, and MEP were recorded from the APB before, and immediately, 10, and 20 min after EMS. [Results] In the APB muscle, the MEP amplitude significantly decreased after EMS, and this effect lasted for 20 min. [Conclusion] The excitability of the corticospinal tract decreased after short-duration high-frequency EMS, and the effect lasted for 20 min. These results suggest that even short duration EMS can change the excitability of the corticospinal tract. The Society of Physical Therapy Science 2015-07-22 2015-07 /pmc/articles/PMC4540830/ /pubmed/26311936 http://dx.doi.org/10.1589/jpts.27.2117 Text en 2015©by the Society of Physical Therapy Science. Published by IPEC Inc. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
spellingShingle | Original Article Miyata, Kazuhiro Usuda, Shigeru Changes in corticospinal excitability with short-duration high-frequency electrical muscle stimulation: a transcranial magnetic stimulation study |
title | Changes in corticospinal excitability with short-duration high-frequency
electrical muscle stimulation: a transcranial magnetic stimulation study |
title_full | Changes in corticospinal excitability with short-duration high-frequency
electrical muscle stimulation: a transcranial magnetic stimulation study |
title_fullStr | Changes in corticospinal excitability with short-duration high-frequency
electrical muscle stimulation: a transcranial magnetic stimulation study |
title_full_unstemmed | Changes in corticospinal excitability with short-duration high-frequency
electrical muscle stimulation: a transcranial magnetic stimulation study |
title_short | Changes in corticospinal excitability with short-duration high-frequency
electrical muscle stimulation: a transcranial magnetic stimulation study |
title_sort | changes in corticospinal excitability with short-duration high-frequency
electrical muscle stimulation: a transcranial magnetic stimulation study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540830/ https://www.ncbi.nlm.nih.gov/pubmed/26311936 http://dx.doi.org/10.1589/jpts.27.2117 |
work_keys_str_mv | AT miyatakazuhiro changesincorticospinalexcitabilitywithshortdurationhighfrequencyelectricalmusclestimulationatranscranialmagneticstimulationstudy AT usudashigeru changesincorticospinalexcitabilitywithshortdurationhighfrequencyelectricalmusclestimulationatranscranialmagneticstimulationstudy |