Cargando…

Neurotoxicity of prenatal alcohol exposure on medullary pre-Bötzinger complex neurons in neonatal rats

Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is unknown whether the 5-hydroxytryptamine 2A receptor (5-HT(2A)R) is involved in the effects of prenatal alcohol exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Ming-li, Wu, Yun-hong, Qian, Zhi-bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541240/
https://www.ncbi.nlm.nih.gov/pubmed/26330832
http://dx.doi.org/10.4103/1673-5374.160101
Descripción
Sumario:Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is unknown whether the 5-hydroxytryptamine 2A receptor (5-HT(2A)R) is involved in the effects of prenatal alcohol exposure. In the present study, pregnant female rats received drinking water containing alcohol at concentrations of 0%, 1%, 2%, 4%, 8% or 10% (v/v) throughout the gestation period. Slices of the medulla from 2-day-old neonatal rats were obtained to record respiratory rhythmical discharge activity. 5-HT(2A)R protein and mRNA levels in the pre-Bötzinger complex of the respiratory center were measured by western blot analysis and quantitative RT-PCR, respectively. Compared with the 0% alcohol group, respiratory rhythmical discharge activity in medullary slices in the 4%, 8% and 10% alcohol groups was decreased, and the reduction was greatest in the 8% alcohol group. Respiratory rhythmical discharge activity in the 10% alcohol group was irregular. Thus, 8% was the most effective alcohol concentration at attenuating respiratory rhythmical discharge activity. These findings suggest that prenatal alcohol exposure attenuates respiratory rhythmical discharge activity in neonatal rats by downregulating 5-HT(2A)R protein and mRNA levels.