Cargando…

Exact Equations for SIR Epidemics on Tree Graphs

We consider Markovian susceptible-infectious-removed (SIR) dynamics on time-invariant weighted contact networks where the infection and removal processes are Poisson and where network links may be directed or undirected. We prove that a particular pair-based moment closure representation generates t...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharkey, K. J., Kiss, I. Z., Wilkinson, R. R., Simon, P. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541714/
https://www.ncbi.nlm.nih.gov/pubmed/24347252
http://dx.doi.org/10.1007/s11538-013-9923-5
Descripción
Sumario:We consider Markovian susceptible-infectious-removed (SIR) dynamics on time-invariant weighted contact networks where the infection and removal processes are Poisson and where network links may be directed or undirected. We prove that a particular pair-based moment closure representation generates the expected infectious time series for networks with no cycles in the underlying graph. Moreover, this “deterministic” representation of the expected behaviour of a complex heterogeneous and finite Markovian system is straightforward to evaluate numerically.