Cargando…
Articulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors
We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges...
Autores principales: | Ge, Song, Fan, Guoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541828/ https://www.ncbi.nlm.nih.gov/pubmed/26131673 http://dx.doi.org/10.3390/s150715218 |
Ejemplares similares
-
RGB-D-Based Pose Estimation of Workpieces with Semantic Segmentation and Point Cloud Registration
por: Xu, Hui, et al.
Publicado: (2019) -
3D Static Point Cloud Registration by Estimating Temporal Human Pose at Multiview
por: Park, Byung-Seo, et al.
Publicado: (2022) -
Robust Non-Rigid Point Set Registration Using Student's-t Mixture Model
por: Zhou, Zhiyong, et al.
Publicado: (2014) -
Articulated Multi-Instrument 2-D Pose Estimation Using Fully Convolutional Networks
Publicado: (2018) -
Inverse consistent non-rigid image registration based on robust point set matching
por: Yang, Xuan, et al.
Publicado: (2014)