Cargando…
GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare
A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global...
Autores principales: | Ali, Rahman, Siddiqi, Muhammad Hameed, Idris, Muhammad, Ali, Taqdir, Hussain, Shujaat, Huh, Eui-Nam, Kang, Byeong Ho, Lee, Sungyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541854/ https://www.ncbi.nlm.nih.gov/pubmed/26147731 http://dx.doi.org/10.3390/s150715772 |
Ejemplares similares
-
H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus
por: Ali, Rahman, et al.
Publicado: (2015) -
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce
por: Idris, Muhammad, et al.
Publicado: (2015) -
ATHENA: A Personalized Platform to Promote an Active Lifestyle and Wellbeing Based on Physical, Mental and Social Health Primitives
por: Fahim, Muhammad, et al.
Publicado: (2014) -
Clinical Concept Extraction with Lexical Semantics to Support Automatic Annotation
por: Abbas, Asim, et al.
Publicado: (2021) -
Knowledge-Based Query Construction Using the CDSS Knowledge Base for Efficient Evidence Retrieval
por: Afzal, Muhammad, et al.
Publicado: (2015)