Cargando…
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a...
Autores principales: | Wang, Xiang, Zheng, Yuan, Zhao, Zhenzhou, Wang, Jinping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541876/ https://www.ncbi.nlm.nih.gov/pubmed/26153771 http://dx.doi.org/10.3390/s150716225 |
Ejemplares similares
-
Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
por: Pham, Minh Tuan, et al.
Publicado: (2020) -
Multiscale Distribution Entropy and t-Distributed Stochastic Neighbor Embedding-Based Fault Diagnosis of Rolling Bearings
por: Tu, Deyu, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Based on Energy Spectrum Statistics and Modified Mayfly Optimization Algorithm
por: Liu, Yuhu, et al.
Publicado: (2021) -
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using an Extended Variable Structure Feedback Linearization Observer
por: Piltan, Farzin, et al.
Publicado: (2018)