Cargando…
Sparse Recovery Optimization in Wireless Sensor Networks with a Sub-Nyquist Sampling Rate
Compressive sensing (CS) is a new technology in digital signal processing capable of high-resolution capture of physical signals from few measurements, which promises impressive improvements in the field of wireless sensor networks (WSNs). In this work, we extensively investigate the effectiveness o...
Autores principales: | Brunelli, Davide, Caione, Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541899/ https://www.ncbi.nlm.nih.gov/pubmed/26184203 http://dx.doi.org/10.3390/s150716654 |
Ejemplares similares
-
Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices
por: Liu, Wei, et al.
Publicado: (2017) -
Sub-Nyquist artefacts and sampling moiré effects
por: Amidror, Isaac
Publicado: (2015) -
Reconstruction of Periodic Band Limited Signals from Non-Uniform Samples with Sub-Nyquist Sampling Rate
por: Wang, Dongxiao, et al.
Publicado: (2020) -
Sub-Sampling Framework Comparison for Low-Power Data Gathering: A Comparative Analysis
por: Milosevic, Bojan, et al.
Publicado: (2015) -
Wideband Spectrum Sensing Based on Single-Channel Sub-Nyquist Sampling for Cognitive Radio
por: Liu, Changjian, et al.
Publicado: (2018)