Cargando…

Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dennis, John-Ojur, Ahmed, Abdelaziz-Yousif, Khir, Mohd-Haris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541900/
https://www.ncbi.nlm.nih.gov/pubmed/26184204
http://dx.doi.org/10.3390/s150716674
_version_ 1782386458959544320
author Dennis, John-Ojur
Ahmed, Abdelaziz-Yousif
Khir, Mohd-Haris
author_facet Dennis, John-Ojur
Ahmed, Abdelaziz-Yousif
Khir, Mohd-Haris
author_sort Dennis, John-Ojur
collection PubMed
description This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO(2)) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH.
format Online
Article
Text
id pubmed-4541900
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-45419002015-08-26 Fabrication and Characterization of a CMOS-MEMS Humidity Sensor Dennis, John-Ojur Ahmed, Abdelaziz-Yousif Khir, Mohd-Haris Sensors (Basel) Article This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO(2)) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH. MDPI 2015-07-10 /pmc/articles/PMC4541900/ /pubmed/26184204 http://dx.doi.org/10.3390/s150716674 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dennis, John-Ojur
Ahmed, Abdelaziz-Yousif
Khir, Mohd-Haris
Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
title Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
title_full Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
title_fullStr Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
title_full_unstemmed Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
title_short Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
title_sort fabrication and characterization of a cmos-mems humidity sensor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541900/
https://www.ncbi.nlm.nih.gov/pubmed/26184204
http://dx.doi.org/10.3390/s150716674
work_keys_str_mv AT dennisjohnojur fabricationandcharacterizationofacmosmemshumiditysensor
AT ahmedabdelazizyousif fabricationandcharacterizationofacmosmemshumiditysensor
AT khirmohdharis fabricationandcharacterizationofacmosmemshumiditysensor