Cargando…

An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor

To solve the problem of air hole coating and analyte filling in microstructured optical fiber-based surface plasmon resonance (SPR) sensors, we designed an exposed-core grapefruit fiber (EC-GFs)-based SPR sensor. The exposed section of the EC-GF is coated with a SPR, supporting thin silver film, whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xianchao, Lu, Ying, Wang, Mintuo, Yao, Jianquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541925/
https://www.ncbi.nlm.nih.gov/pubmed/26184227
http://dx.doi.org/10.3390/s150717106
Descripción
Sumario:To solve the problem of air hole coating and analyte filling in microstructured optical fiber-based surface plasmon resonance (SPR) sensors, we designed an exposed-core grapefruit fiber (EC-GFs)-based SPR sensor. The exposed section of the EC-GF is coated with a SPR, supporting thin silver film, which can sense the analyte in the external environment. The asymmetrically coated fiber can support two separate resonance peaks (x- and y-polarized peaks) with orthogonal polarizations and x-polarized peak, providing a much higher peak loss than y-polarized, also the x-polarized peak has higher wavelength and amplitude sensitivities. A large analyte refractive index (RI) range from 1.33 to 1.42 is calculated to investigate the sensing performance of the sensor, and an extremely high wavelength sensitivity of 13,500 nm/refractive index unit (RIU) is obtained. The silver layer thickness, which may affect the sensing performance, is also discussed. This work can provide a reference for developing a high sensitivity, real-time, fast-response, and distributed SPR RI sensor.