Cargando…
Machine learning classifiers provide insight into the relationship between microbial communities and bacterial vaginosis
BACKGROUND: Bacterial vaginosis (BV) is a disease associated with the vagina microbiome. It is highly prevalent and is characterized by symptoms including odor, discharge and irritation. No single microbe has been found to cause BV. In this paper we use random forests and logistic regression classif...
Autores principales: | Beck, Daniel, Foster, James A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542107/ https://www.ncbi.nlm.nih.gov/pubmed/26294933 http://dx.doi.org/10.1186/s13040-015-0055-3 |
Ejemplares similares
-
Machine Learning Techniques Accurately Classify Microbial Communities by Bacterial Vaginosis Characteristics
por: Beck, Daniel, et al.
Publicado: (2014) -
Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning
por: Celeste, Cameron, et al.
Publicado: (2023) -
2660. Evaluating Risk for Bacterial Vaginosis Utilizing an Unsupervised Machine Learning Approach
por: Rodriguez, Violeta, et al.
Publicado: (2023) -
Temporal Shifts in Microbial Communities in Nonpregnant African-American Women with and without Bacterial Vaginosis
por: Wertz, John, et al.
Publicado: (2008) -
Bacterial vaginosis
por: Hay, Phillip
Publicado: (2017)