Cargando…

Imaging Ca(2+) Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca(2+)), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulkarni, Manoj, Schubert, Timm, Baden, Tom, Wissinger, Bernd, Euler, Thomas, Paquet-Durand, Francois
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542458/
https://www.ncbi.nlm.nih.gov/pubmed/25993489
http://dx.doi.org/10.3791/52588
Descripción
Sumario:Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca(2+)), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca(2+ )imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca(2+) biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections (“slices”) of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca(2+) level. The protocol also allows “in-slice measurement” of absolute Ca(2+) concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca(2+) signaling as well as the potential involvement of Ca(2+) in photoreceptor death and retinal degeneration.