Cargando…
Gene network inference by fusing data from diverse distributions
Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequ...
Autores principales: | Žitnik, Marinka, Zupan, Blaž |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542780/ https://www.ncbi.nlm.nih.gov/pubmed/26072487 http://dx.doi.org/10.1093/bioinformatics/btv258 |
Ejemplares similares
-
Inferring orthologous gene regulatory networks using interspecies data fusion
por: Penfold, Christopher A., et al.
Publicado: (2015) -
Integrative random forest for gene regulatory network inference
por: Petralia, Francesca, et al.
Publicado: (2015) -
Inferring parental genomic ancestries using pooled semi-Markov processes
por: Zou, James Y., et al.
Publicado: (2015) -
Inferring models of multiscale copy number evolution for single-tumor phylogenetics
por: Chowdhury, Salim Akhter, et al.
Publicado: (2015) -
MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
por: Liu, Ke, et al.
Publicado: (2015)