Cargando…
Natural disturbance reduces disease risk in endangered rainforest frog populations
Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that incr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544035/ https://www.ncbi.nlm.nih.gov/pubmed/26294048 http://dx.doi.org/10.1038/srep13472 |
Sumario: | Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11–28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence. |
---|