Cargando…

Changes in chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after botulinum toxin (BTX) treatment

Botulinum toxin (BTX) is a neurotoxin used in medicine as an effective drug in experimental therapy of neurogenic urinary bladder disorders. We have investigated the influence of BTX on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder. The toxin w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lepiarczyk, E., Bossowska, A., Majewski, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544485/
https://www.ncbi.nlm.nih.gov/pubmed/25620409
http://dx.doi.org/10.1007/s00441-014-2086-3
Descripción
Sumario:Botulinum toxin (BTX) is a neurotoxin used in medicine as an effective drug in experimental therapy of neurogenic urinary bladder disorders. We have investigated the influence of BTX on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder. The toxin was injected into the wall of the bladder. SChG neurons were visualized by a retrograde tracing method with fluorescent tracer fast blue (FB) and their chemical coding was investigated by double-labelling immunohistochemistry with antibodies against dopamine β-hydroxylase (DβH; a marker of noradrenergic neurons), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), Leu(5)-enkephalin (L-ENK) and neuronal nitric oxide synthase (nNOS). In both the control (n = 5) and BTX-treated pigs (n = 5), the vast majority (91 ± 2.3 % and 89.8 ± 2.5 %, respectively) of FB-positive (FB+) nerve cells were DβH+. BTX injections caused a decrease in the number of FB+/DβH+ neurons that were immunopositive to NPY (39.5 ± 4.5 % vs 74.5 ± 11.9 %), VIP (8.9 ± 5.3 % vs 22.3 ± 8.8 %), SOM (5.8 ± 2.3 % vs 17.4 ± 3.7 %) or GAL (0.9 ± 1.2 % vs 5.4 ± 4.4 %) and a distinct increase in the number of FB+/DβH+ neurons that were immunoreactive to L-ENK (3.7 ± 2.9 % vs 1.1 % ± 0.8 %) or nNOS (7.7 ± 3.5 % vs 0.8 ± 0.6 %). Our study provides novel evidence that the therapeutic effects of BTX on the mammalian urinary bladder are partly mediated by SChG neurons.