Cargando…
Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with th...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545395/ https://www.ncbi.nlm.nih.gov/pubmed/26287691 http://dx.doi.org/10.1371/journal.pone.0135715 |
_version_ | 1782386749306044416 |
---|---|
author | Lebenberg, Jessica Lalande, Alain Clarysse, Patrick Buvat, Irene Casta, Christopher Cochet, Alexandre Constantinidès, Constantin Cousty, Jean de Cesare, Alain Jehan-Besson, Stephanie Lefort, Muriel Najman, Laurent Roullot, Elodie Sarry, Laurent Tilmant, Christophe Frouin, Frederique Garreau, Mireille |
author_facet | Lebenberg, Jessica Lalande, Alain Clarysse, Patrick Buvat, Irene Casta, Christopher Cochet, Alexandre Constantinidès, Constantin Cousty, Jean de Cesare, Alain Jehan-Besson, Stephanie Lefort, Muriel Najman, Laurent Roullot, Elodie Sarry, Laurent Tilmant, Christophe Frouin, Frederique Garreau, Mireille |
author_sort | Lebenberg, Jessica |
collection | PubMed |
description | This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. |
format | Online Article Text |
id | pubmed-4545395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45453952015-09-01 Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging Lebenberg, Jessica Lalande, Alain Clarysse, Patrick Buvat, Irene Casta, Christopher Cochet, Alexandre Constantinidès, Constantin Cousty, Jean de Cesare, Alain Jehan-Besson, Stephanie Lefort, Muriel Najman, Laurent Roullot, Elodie Sarry, Laurent Tilmant, Christophe Frouin, Frederique Garreau, Mireille PLoS One Research Article This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. Public Library of Science 2015-08-19 /pmc/articles/PMC4545395/ /pubmed/26287691 http://dx.doi.org/10.1371/journal.pone.0135715 Text en © 2015 Lebenberg et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lebenberg, Jessica Lalande, Alain Clarysse, Patrick Buvat, Irene Casta, Christopher Cochet, Alexandre Constantinidès, Constantin Cousty, Jean de Cesare, Alain Jehan-Besson, Stephanie Lefort, Muriel Najman, Laurent Roullot, Elodie Sarry, Laurent Tilmant, Christophe Frouin, Frederique Garreau, Mireille Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging |
title | Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging |
title_full | Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging |
title_fullStr | Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging |
title_full_unstemmed | Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging |
title_short | Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging |
title_sort | improved estimation of cardiac function parameters using a combination of independent automated segmentation results in cardiovascular magnetic resonance imaging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545395/ https://www.ncbi.nlm.nih.gov/pubmed/26287691 http://dx.doi.org/10.1371/journal.pone.0135715 |
work_keys_str_mv | AT lebenbergjessica improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT lalandealain improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT claryssepatrick improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT buvatirene improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT castachristopher improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT cochetalexandre improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT constantinidesconstantin improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT coustyjean improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT decesarealain improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT jehanbessonstephanie improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT lefortmuriel improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT najmanlaurent improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT roullotelodie improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT sarrylaurent improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT tilmantchristophe improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT frouinfrederique improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging AT garreaumireille improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging |