Cargando…

Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging

This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebenberg, Jessica, Lalande, Alain, Clarysse, Patrick, Buvat, Irene, Casta, Christopher, Cochet, Alexandre, Constantinidès, Constantin, Cousty, Jean, de Cesare, Alain, Jehan-Besson, Stephanie, Lefort, Muriel, Najman, Laurent, Roullot, Elodie, Sarry, Laurent, Tilmant, Christophe, Frouin, Frederique, Garreau, Mireille
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545395/
https://www.ncbi.nlm.nih.gov/pubmed/26287691
http://dx.doi.org/10.1371/journal.pone.0135715
_version_ 1782386749306044416
author Lebenberg, Jessica
Lalande, Alain
Clarysse, Patrick
Buvat, Irene
Casta, Christopher
Cochet, Alexandre
Constantinidès, Constantin
Cousty, Jean
de Cesare, Alain
Jehan-Besson, Stephanie
Lefort, Muriel
Najman, Laurent
Roullot, Elodie
Sarry, Laurent
Tilmant, Christophe
Frouin, Frederique
Garreau, Mireille
author_facet Lebenberg, Jessica
Lalande, Alain
Clarysse, Patrick
Buvat, Irene
Casta, Christopher
Cochet, Alexandre
Constantinidès, Constantin
Cousty, Jean
de Cesare, Alain
Jehan-Besson, Stephanie
Lefort, Muriel
Najman, Laurent
Roullot, Elodie
Sarry, Laurent
Tilmant, Christophe
Frouin, Frederique
Garreau, Mireille
author_sort Lebenberg, Jessica
collection PubMed
description This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert.
format Online
Article
Text
id pubmed-4545395
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45453952015-09-01 Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging Lebenberg, Jessica Lalande, Alain Clarysse, Patrick Buvat, Irene Casta, Christopher Cochet, Alexandre Constantinidès, Constantin Cousty, Jean de Cesare, Alain Jehan-Besson, Stephanie Lefort, Muriel Najman, Laurent Roullot, Elodie Sarry, Laurent Tilmant, Christophe Frouin, Frederique Garreau, Mireille PLoS One Research Article This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. Public Library of Science 2015-08-19 /pmc/articles/PMC4545395/ /pubmed/26287691 http://dx.doi.org/10.1371/journal.pone.0135715 Text en © 2015 Lebenberg et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lebenberg, Jessica
Lalande, Alain
Clarysse, Patrick
Buvat, Irene
Casta, Christopher
Cochet, Alexandre
Constantinidès, Constantin
Cousty, Jean
de Cesare, Alain
Jehan-Besson, Stephanie
Lefort, Muriel
Najman, Laurent
Roullot, Elodie
Sarry, Laurent
Tilmant, Christophe
Frouin, Frederique
Garreau, Mireille
Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
title Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
title_full Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
title_fullStr Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
title_full_unstemmed Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
title_short Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging
title_sort improved estimation of cardiac function parameters using a combination of independent automated segmentation results in cardiovascular magnetic resonance imaging
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545395/
https://www.ncbi.nlm.nih.gov/pubmed/26287691
http://dx.doi.org/10.1371/journal.pone.0135715
work_keys_str_mv AT lebenbergjessica improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT lalandealain improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT claryssepatrick improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT buvatirene improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT castachristopher improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT cochetalexandre improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT constantinidesconstantin improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT coustyjean improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT decesarealain improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT jehanbessonstephanie improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT lefortmuriel improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT najmanlaurent improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT roullotelodie improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT sarrylaurent improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT tilmantchristophe improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT frouinfrederique improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging
AT garreaumireille improvedestimationofcardiacfunctionparametersusingacombinationofindependentautomatedsegmentationresultsincardiovascularmagneticresonanceimaging