Cargando…
PET image segmentation using a Gaussian mixture model and Markov random fields
BACKGROUND: Classification algorithms for positron emission tomography (PET) images support computational treatment planning in radiotherapy. Common clinical practice is based on manual delineation and fixed or iterative threshold methods, the latter of which requires regression curves dependent on...
Autores principales: | Layer, Thomas, Blaickner, Matthias, Knäusl, Barbara, Georg, Dietmar, Neuwirth, Johannes, Baum, Richard P, Schuchardt, Christiane, Wiessalla, Stefan, Matz, Gerald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545759/ https://www.ncbi.nlm.nih.gov/pubmed/26501811 http://dx.doi.org/10.1186/s40658-015-0110-7 |
Ejemplares similares
-
Gaussian Markov random fields: theory and applications
por: Rue, Havard, et al.
Publicado: (2005) -
Approximating Hidden Gaussian Markov Random Fields
por: Rue, H, et al.
Publicado: (2003) -
Marginal Variances for Gaussian Markov Random Fields
por: Rue, H
Publicado: (2005) -
Fast sampling of Gaussian Markov random fields with applications
por: Rue, H
Publicado: (2000) -
Preprocessing of (18)F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution
por: Segovia, Fermín, et al.
Publicado: (2017)