Cargando…
Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression
With the growing availability of large-scale biological datasets, automated methods of extracting functionally meaningful information from this data are becoming increasingly important. Data relating to functional association between genes or proteins, such as co-expression or functional association...
Autores principales: | Lehtinen, Sonja, Lees, Jon, Bähler, Jürg, Shawe-Taylor, John, Orengo, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545790/ https://www.ncbi.nlm.nih.gov/pubmed/26288239 http://dx.doi.org/10.1371/journal.pone.0134668 |
Ejemplares similares
-
Co-Expression Network Models Suggest that Stress Increases Tolerance to Mutations
por: Lehtinen, Sonja, et al.
Publicado: (2015) -
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016) -
Kernelized partial least squares for feature reduction and classification of gene microarray data
por: Land, Walker H, et al.
Publicado: (2011) -
Colorimetric Characterization of Color Imaging System Based on Kernel Partial Least Squares
por: Zhao, Siyu, et al.
Publicado: (2023) -
Partial least square regression applied to the QTLMAS 2010 dataset
por: Coster, Albart, et al.
Publicado: (2011)