Cargando…
Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics
The ability of bacteria to adapt to external osmotic changes is fundamental for their survival. Halotolerant microorganisms, such as Tistlia consotensis, have to cope with continuous fluctuations in the salinity of their natural environments which require effective adaptation strategies against salt...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545795/ https://www.ncbi.nlm.nih.gov/pubmed/26287734 http://dx.doi.org/10.1371/journal.pone.0135065 |
_version_ | 1782386786165587968 |
---|---|
author | Rubiano-Labrador, Carolina Bland, Céline Miotello, Guylaine Armengaud, Jean Baena, Sandra |
author_facet | Rubiano-Labrador, Carolina Bland, Céline Miotello, Guylaine Armengaud, Jean Baena, Sandra |
author_sort | Rubiano-Labrador, Carolina |
collection | PubMed |
description | The ability of bacteria to adapt to external osmotic changes is fundamental for their survival. Halotolerant microorganisms, such as Tistlia consotensis, have to cope with continuous fluctuations in the salinity of their natural environments which require effective adaptation strategies against salt stress. Changes of extracellular protein profiles from Tistlia consotensis in conditions of low and high salinities were monitored by proteogenomics using a bacterial draft genome. At low salinity, we detected greater amounts of the HpnM protein which is involved in the biosynthesis of hopanoids. This may represent a novel, and previously unreported, strategy by halotolerant microorganisms to prevent the entry of water into the cell under conditions of low salinity. At high salinity, proteins associated with osmosensing, exclusion of Na(+) and transport of compatible solutes, such as glycine betaine or proline are abundant. We also found that, probably in response to the high salt concentration, T. consotensis activated the synthesis of flagella and triggered a chemotactic response neither of which were observed at the salt concentration which is optimal for growth. Our study demonstrates that the exoproteome is an appropriate indicator of adaptive response of T. consotensis to changes in salinity because it allowed the identification of key proteins within its osmoadaptive mechanism that had not previously been detected in its cell proteome. |
format | Online Article Text |
id | pubmed-4545795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45457952015-09-01 Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics Rubiano-Labrador, Carolina Bland, Céline Miotello, Guylaine Armengaud, Jean Baena, Sandra PLoS One Research Article The ability of bacteria to adapt to external osmotic changes is fundamental for their survival. Halotolerant microorganisms, such as Tistlia consotensis, have to cope with continuous fluctuations in the salinity of their natural environments which require effective adaptation strategies against salt stress. Changes of extracellular protein profiles from Tistlia consotensis in conditions of low and high salinities were monitored by proteogenomics using a bacterial draft genome. At low salinity, we detected greater amounts of the HpnM protein which is involved in the biosynthesis of hopanoids. This may represent a novel, and previously unreported, strategy by halotolerant microorganisms to prevent the entry of water into the cell under conditions of low salinity. At high salinity, proteins associated with osmosensing, exclusion of Na(+) and transport of compatible solutes, such as glycine betaine or proline are abundant. We also found that, probably in response to the high salt concentration, T. consotensis activated the synthesis of flagella and triggered a chemotactic response neither of which were observed at the salt concentration which is optimal for growth. Our study demonstrates that the exoproteome is an appropriate indicator of adaptive response of T. consotensis to changes in salinity because it allowed the identification of key proteins within its osmoadaptive mechanism that had not previously been detected in its cell proteome. Public Library of Science 2015-08-19 /pmc/articles/PMC4545795/ /pubmed/26287734 http://dx.doi.org/10.1371/journal.pone.0135065 Text en © 2015 Rubiano-Labrador et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rubiano-Labrador, Carolina Bland, Céline Miotello, Guylaine Armengaud, Jean Baena, Sandra Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics |
title | Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics |
title_full | Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics |
title_fullStr | Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics |
title_full_unstemmed | Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics |
title_short | Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics |
title_sort | salt stress induced changes in the exoproteome of the halotolerant bacterium tistlia consotensis deciphered by proteogenomics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545795/ https://www.ncbi.nlm.nih.gov/pubmed/26287734 http://dx.doi.org/10.1371/journal.pone.0135065 |
work_keys_str_mv | AT rubianolabradorcarolina saltstressinducedchangesintheexoproteomeofthehalotolerantbacteriumtistliaconsotensisdecipheredbyproteogenomics AT blandceline saltstressinducedchangesintheexoproteomeofthehalotolerantbacteriumtistliaconsotensisdecipheredbyproteogenomics AT miotelloguylaine saltstressinducedchangesintheexoproteomeofthehalotolerantbacteriumtistliaconsotensisdecipheredbyproteogenomics AT armengaudjean saltstressinducedchangesintheexoproteomeofthehalotolerantbacteriumtistliaconsotensisdecipheredbyproteogenomics AT baenasandra saltstressinducedchangesintheexoproteomeofthehalotolerantbacteriumtistliaconsotensisdecipheredbyproteogenomics |