Cargando…

Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial

BACKGROUND: Robots offer an alternative, potentially advantageous method of providing repetitive, high-dosage, and high-intensity training to address the gait impairments caused by stroke. In this study, we compared the effects of the Stride Management Assist (SMA®) System, a new wearable robotic de...

Descripción completa

Detalles Bibliográficos
Autores principales: Buesing, Carolyn, Fisch, Gabriela, O’Donnell, Megan, Shahidi, Ida, Thomas, Lauren, Mummidisetty, Chaithanya K., Williams, Kenton J., Takahashi, Hideaki, Rymer, William Zev, Jayaraman, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545867/
https://www.ncbi.nlm.nih.gov/pubmed/26289955
http://dx.doi.org/10.1186/s12984-015-0062-0
Descripción
Sumario:BACKGROUND: Robots offer an alternative, potentially advantageous method of providing repetitive, high-dosage, and high-intensity training to address the gait impairments caused by stroke. In this study, we compared the effects of the Stride Management Assist (SMA®) System, a new wearable robotic device developed by Honda R&D Corporation, Japan, with functional task specific training (FTST) on spatiotemporal gait parameters in stroke survivors. METHODS: A single blinded randomized control trial was performed to assess the effect of FTST and task-specific walking training with the SMA® device on spatiotemporal gait parameters. Participants (n = 50) were randomly assigned to FTST or SMA. Subjects in both groups received training 3 times per week for 6–8 weeks for a maximum of 18 training sessions. The GAITRite® system was used to collect data on subjects’ spatiotemporal gait characteristics before training (baseline), at mid-training, post-training, and at a 3-month follow-up. RESULTS: After training, significant improvements in gait parameters were observed in both training groups compared to baseline, including an increase in velocity and cadence, a decrease in swing time on the impaired side, a decrease in double support time, an increase in stride length on impaired and non-impaired sides, and an increase in step length on impaired and non-impaired sides. No significant differences were observed between training groups; except for SMA group, step length on the impaired side increased significantly during self-selected walking speed trials and spatial asymmetry decreased significantly during fast-velocity walking trials. CONCLUSIONS: SMA and FTST interventions provided similar, significant improvements in spatiotemporal gait parameters; however, the SMA group showed additional improvements across more parameters at various time points. These results indicate that the SMA® device could be a useful therapeutic tool to improve spatiotemporal parameters and contribute to improved functional mobility in stroke survivors. Further research is needed to determine the feasibility of using this device in a home setting vs a clinic setting, and whether such home use provides continued benefits. TRIAL REGISTRATION: This study is registered under the title “Development of walk assist device to improve community ambulation” and can be located in clinicaltrials.gov with the study identifier: NCT01994395.