Cargando…

PUMA mediates the combinational therapy of 5-FU and NVP-BEZ235 in colon cancer

Colon cancer is the third most common cancer in humans which has a high mortality rate, and 5-Fluorouracil (5-FU) is one of the most widely used drugs in colon cancer therapy. However, acquired chemoresistance is becoming the major challenges for patients, and the molecular mechanism underlying the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Huanan, Zhang, Lingling, Yang, Xu, Jin, Yipeng, Pei, Shimin, Zhang, Di, Zhang, Hong, Zhou, Bin, Zhang, Yingjie, Lin, Degui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546474/
https://www.ncbi.nlm.nih.gov/pubmed/25965911
Descripción
Sumario:Colon cancer is the third most common cancer in humans which has a high mortality rate, and 5-Fluorouracil (5-FU) is one of the most widely used drugs in colon cancer therapy. However, acquired chemoresistance is becoming the major challenges for patients, and the molecular mechanism underlying the development of 5-FU resistance is still poorly understood. In this study, a newly designed therapy in combination with 5-FU and NVP-BEZ235 in colon cancer cells (HCT-116 and RKO) was established, to investigate the mechanism of 5-FU resistance and optimize drug therapy to improve outcome for patients. Our results show 5-FU induced cell apoptosis through p53/PUMA pathway, with aberrant Akt activation, which may well explain the mechanism of 5-FU resistance. NVP-BEZ235 effectively up-regulated PUMA expression, mainly through inactivation of PI3K/Akt and activation of FOXO3a, leading to cell apoptosis even in the p53(−/−) HCT-116 cells. Combination treatment of 5-FU and NVP-BEZ235 further increased cell apoptosis in a PUMA/Bax dependent manner. Moreover, significantly enhanced anti-tumor effects were observed in combination treatment in vivo. Together, these results demonstrated that the combination treatment of 5-FU and NVP-BEZ235 caused PUMA-dependent tumor suppression both in vitro and in vivo, which may promise a more effective strategy for colon cancer therapy.