Cargando…
Data-Driven Information Extraction from Chinese Electronic Medical Records
OBJECTIVE: This study aims to propose a data-driven framework that takes unstructured free text narratives in Chinese Electronic Medical Records (EMRs) as input and converts them into structured time-event-description triples, where the description is either an elaboration or an outcome of the medic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546596/ https://www.ncbi.nlm.nih.gov/pubmed/26295801 http://dx.doi.org/10.1371/journal.pone.0136270 |
Sumario: | OBJECTIVE: This study aims to propose a data-driven framework that takes unstructured free text narratives in Chinese Electronic Medical Records (EMRs) as input and converts them into structured time-event-description triples, where the description is either an elaboration or an outcome of the medical event. MATERIALS AND METHODS: Our framework uses a hybrid approach. It consists of constructing cross-domain core medical lexica, an unsupervised, iterative algorithm to accrue more accurate terms into the lexica, rules to address Chinese writing conventions and temporal descriptors, and a Support Vector Machine (SVM) algorithm that innovatively utilizes Normalized Google Distance (NGD) to estimate the correlation between medical events and their descriptions. RESULTS: The effectiveness of the framework was demonstrated with a dataset of 24,817 de-identified Chinese EMRs. The cross-domain medical lexica were capable of recognizing terms with an F1-score of 0.896. 98.5% of recorded medical events were linked to temporal descriptors. The NGD SVM description-event matching achieved an F1-score of 0.874. The end-to-end time-event-description extraction of our framework achieved an F1-score of 0.846. DISCUSSION: In terms of named entity recognition, the proposed framework outperforms state-of-the-art supervised learning algorithms (F1-score: 0.896 vs. 0.886). In event-description association, the NGD SVM is superior to SVM using only local context and semantic features (F1-score: 0.874 vs. 0.838). CONCLUSIONS: The framework is data-driven, weakly supervised, and robust against the variations and noises that tend to occur in a large corpus. It addresses Chinese medical writing conventions and variations in writing styles through patterns used for discovering new terms and rules for updating the lexica. |
---|