Cargando…
Visual parameter optimisation for biomedical image processing
BACKGROUND: Biomedical image processing methods require users to optimise input parameters to ensure high-quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of under...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547193/ https://www.ncbi.nlm.nih.gov/pubmed/26329538 http://dx.doi.org/10.1186/1471-2105-16-S11-S9 |
_version_ | 1782387053567148032 |
---|---|
author | Pretorius, AJ Zhou, Y Ruddle, RA |
author_facet | Pretorius, AJ Zhou, Y Ruddle, RA |
author_sort | Pretorius, AJ |
collection | PubMed |
description | BACKGROUND: Biomedical image processing methods require users to optimise input parameters to ensure high-quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. RESULTS: We present a visualisation method that transforms users' ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. CONCLUSIONS: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches. |
format | Online Article Text |
id | pubmed-4547193 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45471932015-09-10 Visual parameter optimisation for biomedical image processing Pretorius, AJ Zhou, Y Ruddle, RA BMC Bioinformatics Research BACKGROUND: Biomedical image processing methods require users to optimise input parameters to ensure high-quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. RESULTS: We present a visualisation method that transforms users' ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. CONCLUSIONS: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches. BioMed Central 2015-08-13 /pmc/articles/PMC4547193/ /pubmed/26329538 http://dx.doi.org/10.1186/1471-2105-16-S11-S9 Text en Copyright © 2015 Pretorius et al. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Pretorius, AJ Zhou, Y Ruddle, RA Visual parameter optimisation for biomedical image processing |
title | Visual parameter optimisation for biomedical image processing |
title_full | Visual parameter optimisation for biomedical image processing |
title_fullStr | Visual parameter optimisation for biomedical image processing |
title_full_unstemmed | Visual parameter optimisation for biomedical image processing |
title_short | Visual parameter optimisation for biomedical image processing |
title_sort | visual parameter optimisation for biomedical image processing |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547193/ https://www.ncbi.nlm.nih.gov/pubmed/26329538 http://dx.doi.org/10.1186/1471-2105-16-S11-S9 |
work_keys_str_mv | AT pretoriusaj visualparameteroptimisationforbiomedicalimageprocessing AT zhouy visualparameteroptimisationforbiomedicalimageprocessing AT ruddlera visualparameteroptimisationforbiomedicalimageprocessing |