Cargando…
An unsupervised learning approach to find ovarian cancer genes through integration of biological data
Cancer is a disease characterized largely by the accumulation of out-of-control somatic mutations during the lifetime of a patient. Distinguishing driver mutations from passenger mutations has posed a challenge in modern cancer research. With the advanced development of microarray experiments and cl...
Autores principales: | Ma, Christopher, Chen, Yixin, Wilkins, Dawn, Chen, Xiang, Zhang, Jinghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547402/ https://www.ncbi.nlm.nih.gov/pubmed/26328548 http://dx.doi.org/10.1186/1471-2164-16-S9-S3 |
Ejemplares similares
-
Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning
por: Chen, Chien-Chang, et al.
Publicado: (2018) -
A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration
por: Hameed, Pathima Nusrath, et al.
Publicado: (2018) -
Supervised and unsupervised learning for data science
por: Berry, Michael W, et al.
Publicado: (2020) -
Dissecting unsupervised learning through hidden Markov modeling in electrophysiological data
por: Masaracchia, Laura, et al.
Publicado: (2023) -
The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data
por: Chimienti, Marianna, et al.
Publicado: (2016)