Cargando…
A hybrid imputation approach for microarray missing value estimation
BACKGROUND: Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the...
Autores principales: | Li, Huihui, Zhao, Changbo, Shao, Fengfeng, Li, Guo-Zheng, Wang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547405/ https://www.ncbi.nlm.nih.gov/pubmed/26330180 http://dx.doi.org/10.1186/1471-2164-16-S9-S1 |
Ejemplares similares
-
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme
por: Wang, Xian, et al.
Publicado: (2006) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008)