Cargando…
Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study
Natural language processing tools allow the characterization of sentiment–that is, terms expressing positive and negative emotion–in text. Applying such tools to electronic health records may provide insight into meaningful patient or clinician features not captured in coded data alone. We performed...
Autores principales: | McCoy, Thomas H., Castro, Victor M., Cagan, Andrew, Roberson, Ashlee M., Kohane, Isaac S., Perlis, Roy H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547711/ https://www.ncbi.nlm.nih.gov/pubmed/26302085 http://dx.doi.org/10.1371/journal.pone.0136341 |
Ejemplares similares
-
Validation of a risk stratification tool for fall-related injury in a state-wide cohort
por: McCoy, Thomas H, et al.
Publicado: (2017) -
Predicting early psychiatric readmission with natural language processing of narrative discharge summaries
por: Rumshisky, A, et al.
Publicado: (2016) -
Stratification of risk for hospital admissions for injury related to fall: cohort study
por: Castro, Victor M, et al.
Publicado: (2014) -
Hard for humans, hard for machines: predicting readmission after psychiatric hospitalization using narrative notes
por: Boag, William, et al.
Publicado: (2021) -
Case-control study of neuropsychiatric symptoms in electronic health records following COVID-19 hospitalization in 2 academic health systems
por: Castro, Victor M., et al.
Publicado: (2022)