Cargando…

MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaolu, Yin, Danqing, Li, Peng, Yin, Shaowu, Wang, Li, Jia, Yihe, Shu, Xinhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547744/
https://www.ncbi.nlm.nih.gov/pubmed/26301415
http://dx.doi.org/10.1371/journal.pone.0136383
_version_ 1782387104426229760
author Wang, Xiaolu
Yin, Danqing
Li, Peng
Yin, Shaowu
Wang, Li
Jia, Yihe
Shu, Xinhua
author_facet Wang, Xiaolu
Yin, Danqing
Li, Peng
Yin, Shaowu
Wang, Li
Jia, Yihe
Shu, Xinhua
author_sort Wang, Xiaolu
collection PubMed
description MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish.
format Online
Article
Text
id pubmed-4547744
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45477442015-09-01 MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata Wang, Xiaolu Yin, Danqing Li, Peng Yin, Shaowu Wang, Li Jia, Yihe Shu, Xinhua PLoS One Research Article MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish. Public Library of Science 2015-08-24 /pmc/articles/PMC4547744/ /pubmed/26301415 http://dx.doi.org/10.1371/journal.pone.0136383 Text en © 2015 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Wang, Xiaolu
Yin, Danqing
Li, Peng
Yin, Shaowu
Wang, Li
Jia, Yihe
Shu, Xinhua
MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata
title MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata
title_full MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata
title_fullStr MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata
title_full_unstemmed MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata
title_short MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata
title_sort microrna-sequence profiling reveals novel osmoregulatory microrna expression patterns in catadromous eel anguilla marmorata
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547744/
https://www.ncbi.nlm.nih.gov/pubmed/26301415
http://dx.doi.org/10.1371/journal.pone.0136383
work_keys_str_mv AT wangxiaolu micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata
AT yindanqing micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata
AT lipeng micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata
AT yinshaowu micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata
AT wangli micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata
AT jiayihe micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata
AT shuxinhua micrornasequenceprofilingrevealsnovelosmoregulatorymicrornaexpressionpatternsincatadromouseelanguillamarmorata