Cargando…
Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine
Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provi...
Autores principales: | Yarimizu, Masayuki, Wei, Cao, Komiyama, Yusuke, Ueki, Kokoro, Nakamura, Shugo, Sumikoshi, Kazuya, Terada, Tohru, Shimizu, Kentaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548105/ https://www.ncbi.nlm.nih.gov/pubmed/26347773 http://dx.doi.org/10.1155/2015/528097 |
Ejemplares similares
-
Prediction of N-myristoylation modification of proteins by SVM
por: Cao, Wei, et al.
Publicado: (2011) -
Development of a protein–ligand-binding site prediction method based on interaction energy and sequence conservation
por: Tsujikawa, Hiroto, et al.
Publicado: (2016) -
Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines
por: Someya, Seizi, et al.
Publicado: (2010) -
BUDDY-system: A web site for constructing a dataset of protein pairs between ligand-bound and unbound states
por: Morita, Mizuki, et al.
Publicado: (2011) -
Automatic generation of bioinformatics tools for predicting protein–ligand binding sites
por: Komiyama, Yusuke, et al.
Publicado: (2016)