Cargando…
Quantum Nonlocality of Arbitrary Dimensional Bipartite States
We study the nonlocality of arbitrary dimensional bipartite quantum states. By computing the maximal violation of a set of multi-setting Bell inequalities, an analytical and computable lower bound has been derived for general two-qubit states. This bound gives the necessary condition that a two-qubi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548185/ https://www.ncbi.nlm.nih.gov/pubmed/26303075 http://dx.doi.org/10.1038/srep13358 |
Sumario: | We study the nonlocality of arbitrary dimensional bipartite quantum states. By computing the maximal violation of a set of multi-setting Bell inequalities, an analytical and computable lower bound has been derived for general two-qubit states. This bound gives the necessary condition that a two-qubit state admits no local hidden variable models. The lower bound is shown to be better than that from the CHSH inequality in judging the nonlocality of some quantum states. The results are generalized to the case of high dimensional quantum states, and a sufficient condition for detecting the non-locality has been presented. |
---|