Cargando…
The application of fractional Mel cepstral coefficient in deceptive speech detection
The inconvenience operation of EEG P300 or functional magnetic resonance imaging (FMRI) will be overcome, when the deceptive information can be effectively detected from speech signal analysis. In this paper, the fractional Mel cepstral coefficient (FrCC) is proposed as the speech character for dece...
Autores principales: | Pan, Xinyu, Zhao, Heming, Zhou, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548484/ https://www.ncbi.nlm.nih.gov/pubmed/26312185 http://dx.doi.org/10.7717/peerj.1194 |
Ejemplares similares
-
Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features
por: Eskidere, Ömer, et al.
Publicado: (2015) -
Detection of COVID-19 from speech signal using bio-inspired based cepstral features
por: Dash, Tusar Kanti, et al.
Publicado: (2021) -
Alignment-Free Z-Curve Genomic Cepstral Coefficients and Machine Learning for Classification of Viruses
por: Adetiba, Emmanuel, et al.
Publicado: (2018) -
Machine learning approach for detecting Covid-19 from speech signal using Mel frequency magnitude coefficient
por: Nayak, Sudhansu Sekhar, et al.
Publicado: (2023) -
Cepstral Analysis of Voice in Patients With Thyroidectomy
por: Shin, Yu Jeong, et al.
Publicado: (2016)